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A simplified method for finite-element calculation of the stressed state of a plane region undergoing a 

polymorphic transformation is described. An exact solution is obtained for a circular region and the exact 

solution is compared with the numerical one. The effect of an austenite-ferrite transformation on the behavior 

of the stressed state in the circular region is analyzed. 

As a rule, cooling of castings is accompanied by the appearance of inhomogeneous fields induced [1 ] by 
inhomogeneity of the temperature field in the casting, nonsimultaneous polymorphic transformations in different 

parts of the casting, and retardation of shrinkage of the casting by the mold. 

In the present work a method is described that is used for simplified Calculation of the joint effect of the 

first two factors on the state of a thin casting of an iron-carbon alloy, cooling in the solid phase. The following 

simplifications are assumed here: 
only the austenite-ferrite transformation is considered; 

transformation-induced elastic strains are assumed to be compression-stretching strains; 

transformation-induced shear strains are neglected; 

the calculations are carried out within unbound linear thermal elasticityl 
the mechanical and thermal coefficients are assumed to be constant and independent of temperature. 

1. Mathematical Model. The following mathematical model is used: the problem of cooling of the plane 

region f2 is considered. At the boundary L of the region a constant heat flux is prescribed. 
In the region g2 the heat-conduction equation has the following form: 

T (x ,  y ,  t ) - a V 2 T  (x ,  y ,  t) = 0 ,  T (x ,  y ,  O) = T O , --~ L = ' 

where T(x, y, t) is the value of the temperature at the point with the coordinate (x, y) at the time t. 

The solution of Eq. (1) will be sought by the finite-element method in the projection formulation [2 ]. For 

this purpose, the function T(x, y, t) is replaced by an approximate temperature function expressed as the finite 

series 

rr/  �9 (2) T (x,  y ,  t) = ~, N] (x,  y) T] (t) ,  
]=1 

where j is the number of the node; m is the number of nodes in the region f~; Nj(x, y) are nonzero local functions 

in a neighborhood of the node j, which later will be referred to as shape functions; T]y(t) is the temperature at the 
node j. To find the node temperatures in Eq. (2), use will be made of the condition of orthogonality of the residue 

to all shape functions [2 ]: 

f f [T(x, y,  t ) - a V 2 T ( x ,  y,  t ) ] N  i(x, y) d f f2=0 ,  j =  1, 2 . . . . .  m.  
f~ 

(3) 
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The substitution of Eq. (2) into the m equations (3) leads to a system of ordinary differential equations 

relative to the time functions T;(t), which is integrated by the finite-difference method. This results in a system 

of linear algebraic equations with a band matrix, whose solution is the field of nodal temperatures at discrete 

moments. 

The thermoelastic problem is solved at each time step and two temperature fields are used here, namely, 

actual and fictitious ones. The fictitious temperature field simulates polymorphic transformations during cooling. 
The modified functional of the free energy is chosen in the form 

[ 2 2 1 2 2 1  ] ] F = f f "~ e 0 Jr/A bl x "k Vy "at- "~ (Uy -b VX) 2 -- aKe  0 (( Y - Tu) + AT P) df~, (4) 

where u, v are projections of the displacement vector on the coordinate axes O X  and OY; ux, Vy, Uy, Vx are partial 

derivatives of the components of the displacement vector with respect to the coordinates; e0 = Ux + Vy is the trace 

of the strain tensor; A T  p is the change in the fictitious temperature; T is the actual temperature. 

Assuming that structural changes are accompanied by small local uniform compression or stretching strains 
(depending on the changes in the density), we can write 

where ( A V / V I  p is the local change in the volume induced by polymorphic transformations, which must be calculated 

from the solution of the problem of the local kinetics of the transformations. In what follows, we will restrict 

ourselves to the very simple concept of the local kinetics of the phases obtained from the equilibrium phase diagram 

by the rule of segments. 

The finite-element discretization of the computation region allows the functional of the free energy (4) to 

be reduced to the quadratic form [3 ]. This form is minimized by the formulas of [4 ] 

k+ l  k k k k+l  k k k 
uj = u j + f l s u j ,  vj = v j + f l s v j ,  j = l ,  2 . . . . .  m,  (5) 

where uj, vj are components of the displacement vectors at the j-th node; k is the number of the iteration; su~ and 

s ~  are the directions of search; flk is the length of the step. 

The components of the strain and stress tensors are determined for any node of the calculation region 

using the displacement fields found from Eq. (5): 

1 
exx = Ux,  eyy ---- Vy, exy = -~ (Uy .4- Px) ; 

= - a - - -  axy - 2~Uexy. 

The Mises number is used as a criterion of the short-time strength: 

where ai is the stress intensity; Cry is the yield point of the material. With this criterion it is possible to predict the 
regions of possible discontinuities in the material. 

2. Analytical Example. An infinite cylinder with a constant heat flux on the surface will be taken as the 
calculation region. In the present case the temperature problem admits an exact solution as an infinite series of 
Bessel functions [5 ]: 
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  r, =  I2Fo 112r21  , (r 2] h 4 - ~ -  - E 2 J0 ~tn exp ( -  }t n Fo) , (6) 

where/~n are the roots of the characteristic equation J1 (un) = 0. 

To solve the elastic problem in the case of a polymorphic transformation, the local change in the volume 
will be defined as follows: 

The fraction ~ of the new phase is calculated from the linearized diagram of state by the rule of  segments: 

B c 1 c 
=A-TA_T(r, O, A-cl_c , B-q_c (TA-T1). 

By solving the equilibrium equation we obtain an expression for the displacements and the components of 

the stress tensor in cylindrical coordinates: 

l + v  
u ( r ,  0 = 3 ( 1 - v )  r 

[r r ] 
a f T ( r ,  t) r d r - B  f rdr 

0 o T A - T ( r '  t) 

+ (1 + v ) ( 1 - 2 v ) r  [ R R ] 
3(1 v) R2 [ a  f T ( r ,  t) r d r - B  f rdr 

-- 0 0 r A - T ( r ,  t) 
J 

+ 

+ 

l + v  
+ ~ r (A - aTu) ,  (7) 

art (r ,  t) = E [ _  a rf T ( r ,  t) r d r + B  r f rdr 
3 (i---- v) [ -~ 0 r 0 T A - T (r,  t) 

a R B R 
+ - ~  f T (r ,  t) rar - f rar 

0 - ~  0 r A -  r ( r ,  t) 

+ 

(8) 

r 
E 2 f T (r ,  t) rdr - rdr + 

a f t ( r ,  t) = 3 (l _ v) r o r 0 T A - T (r,  t) 

a R B R rdr B I 
"1 

+ --~ f T (r,  t) rdr - f - aT + ] . (9) 
0 - '~ 0 T A -  T ( r ,  t) T A -  T ( r ,  t) 

Substitution of temperature function (6) into Eqs. (7)-(9) results in two types of integrals that can be 

calculated analytically and numerically. 
It should be noted that in formulas (8) and (9) for the components of the strain tensor there are terms of 

ordinary thermal elasticity and terms of polymorphic transformations and under certain conditions the latter can 

dominate over the former. 
3. Comparison of Numerical and Analytical Results. A numerical calculation of the problem of cooling of 

a circular region containing 289 nodes and 512 simplex finite elements was carried out by the method described 
in Sec. 1. The initial temperature of the calculation region and the temperature of the unstrained state were assumed 
to be 842~ An iron-carbon alloy with the following characteristics was used for the calculations: % C = 0.2 %; E 
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Fig. 1. Plot of the total temperature (the sum of relative, actual, and fictitious 
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Fig. 2. Plot of tangential (a) and radial (b) components and stress intensity 

(c) versus the relative radius; x ,  O, numerical and exact solutions, alb O'rr, 

~i, MPa. 

= 1011 N/m2;  v = 0.3; GT = 3. I0 g N/m2; a = 3.10 . 5  1/deg. For this concentration of the alloy the initial and final 

temperature of the transformation were 842 and 727~ respectively. 

In cooling, the following type of polymorphic t ransformations was considered: the aus teni te - fer r i te  

transformation with the volume effect Q = 0.0358. At temperatures lower than the eutectic one pure ferrite was 

assumed to exist. 
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In Figs. 1 and 2 one can see results of numerical calculations of the total temperature, components of the 

stress tensor, and the intensity of stresses with account for polymorphic transformations. Curves 1, 2, and 3 

correspond to dimensionless times of 0.110, 0.880, 1.760. By the time Fo = 1.760 austenite has undergone complete 
transformation. 

Inclusion of the transformations in the two-phase austenite-ferrite region (as compared with calculations 

neglecting the transformations) led to the following results: 
the maximum values of the stress intensities were observed in the initial cooling; 
the signs of the radial displacements changed and the displacements were directed outside the region; 

the signs of the radial and tangential components of the stress tensor changed, the compression regions 
became stretching regions and vice versa, and absolute values of the components of the stress tensor and the stress 

intensity have increased severalfold. 
Thus, inclusion of the transformations changes markedly the pattern of the stress-strain state of the cooling 

region. Changes in the sign of radial displacements and radial and tangential components of the strain and stress 

tensors and a substantial increase in the absolute values of these quantities are both possible. 

The closeness of the approximate and exact solutions allows the approximate method to be used in 

calculations of regions of arbitrary shape. 

N O T A T I O N  

a, thermal diffusivity; V 2, Laplacian; TO, initial temperature; q, constant heat flux on the boundary; h, 
thermal conductivity; 2, #, Lam~ parameters; E, elasticity modulus; v, Poisson coefficient; K, volume compression 

coefficient; a, volume heat expansion coefficient; Tu, temperature of the unstrained state; AT p, change in the 
fictitious temperature; u, v, components of the displacement vectors; Gi, intensity of stresses; Gy, yield point of the 
material; Fo = at/R 2, Fourier number; R, radius of the cylinder; Q, volume effect of the transformation; q~, fraction 

of the new phase; c, concentration of carbon in the alloy; TA, temperature of the a-7  transition in pure iron; c2, 
maximum solubility of carbon in ferrite at the eutectic temperature: Cl, concentration of carbon in the eutectoid; 

T1, temperature of the eutectoid transformation. 
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